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FINITE ELEMENT ANALYSIS OF
AEROACQUSTIC JET-FLAP FLOWS
By
A.J. Baker and P.D. Manhardt
Computational Mechanics Consultants

Knoxville, TN
SUMMARY

A computational analysis has been performed on the steady, turbulent
aerodynamic flowfields associated with a basic jet-blown flap configuration.
For regions devoid of flow separation, a parabolic approximation to the
governing time-averaged Navier-Stokes equations is applied, which renders
solution amenable to a downstream marching technique. Numerical results are
presented for the flow on the symmetry plane of a rectangular slot-nozzle
planar jet flap geometry, including detailed prediction of flowfield evolution
within the secondary mixing region immediately downstream of the flap trailing
edge. Using a two equation turbulence kinetic energy closure model, the
numerical results predict rapid generation and decay of large spatial gradients
in mean and correlated fluctuating velocity components within the immediate
wake region. Modifications to the trailing edge turbulent flow structure, as
induced by a simulated porous surface treatment of the flap, are evaluated
using a hybrid turbulence closure model. A numerical analysis of the recircu-
Tating flow within a representative discrete slot in the surface is evaluated
using a complete two-dimensional, time-averaged Navier-Stokes equation set.
The parabolic analysis for a smooth flap is extended in an introductory manner
to a finite span three-dimensional jet-flap flow. The results of the study
are presented in this report.

INTRODUCTION

The use of directed jet flows is common in the design of aerodynamic 1ift
systems. Examples include the leading edge slat-trailing edge flap configura-
tions characteristic of current transport technology, as well as the lower
and/or upper-surface blown flap geometries considered for STOL aircraft. In
each instance, high momentum flow is directed generally tangential to an aero-
dynamic surface. Such 1ift augmentation systems result in noise sources being
generated by flow interaction with the 1ifting surface and equilibration with
the free stream. With the progress made in noise reduction of propulsion
system components, the noise floor associated with the next generation of pro-
pulsive Tift systems may well be constrained by the aeroacoustics of the
fundamental jet-flap flowfield.



Experimental testing of elementary configurations has been employed to
characterize the aeroacoustic sources associated with:the basic.jet+flap:flow
in an upper surface blowing (USB) orientation. Gruschka and Schrecker (ref. 1)
evaluated a USB geometry comprised of a rectangular jet issuing over a planar
flap with sharp trailing edge, and compared measured noise intensities with
free jet results. Their data bear out the U® law for free jets, first noted
by Lighthill (ref.2,3), and determined a 6th power law for the flap cases.
The secondary flow mixing region, immediately downstream of the flap trailing
edge contained a dominant noise source. Reshotko et al., (ref. 4) tested a
small USB model having a deflected circular jet issuing over a wing section,
to determine the acoustic efficiency of the wing as a noise shield. The
results showed increased effectiveness with increasing frequency similar to
the results of Hayden (ref. 5). An extensive investigation of aerodynamic
and acoustic phenomena of a slot nozzle and variable length straight flap
was performed by Patterson et al. (ref. 6). They measured free field acoustic
response, reverberation chamber acoustics, and utilized hot film anemometry
and flow visualization techniques to correlate noise with flow perturbation
phenomena. For the geometry tested, a maximum sound power level (SPL)
occurred for a flap length of approximately 10 slot heights. An instability
condition appeared for this case, as verified by flow visualization and hot
film data. Longer flap lengths were determined to produce noise levels
closer to the free jet measurements. Becker and Maus (ref. 7) report results
of a comprehensive experimental project on the rectangular slot nozzle-
planar flap geometry similar to reference 1. Using near and farfield micro-
phone locations and a cross-correlation technique, they determined two extrema
in acoustic source strength within the secondary mixing region, one located
directly adjacent to the flap trailing edge. Detailed mean and fluctuating
velocity correlation measurements indicate the turbulence structure in both
mixing regions is highly anisotropic, and that sharp peaks in turbulence
quantities occurred immediately downstream of the trailing edge. These
rapidly dispersed as the flow proceded into the wake.

These results generally indicate that a large portion of the fly-over
noise associated with a USB equipped aircraft will be generated within the
primary and secondary mixing regions. For the latter, the turbulent mixing
flow and resultant acoustic source distribution is strongly dependent upon
the boundary layer flow immediately preceeding the trailing edge (cf., ref. 8).
Hayden, et al,(ref. 5, 9) evaluated a variable impedance flap surface to
reduce the noise intensity associated with a USB configuration. Penalties
encountered in aerodynamic performance of the early systems were significantly
reduced in more recent configurations, employing a cavity-backed porous mesh
surface (ref. 10), while retaining the favorable broadband farfield noise
reduction of 3 to 10 dB over a wide frequency range and for Targe turning
angle. Many additional studies on powered and unpowered configuration noise
measurements, as a function of flow parameters are reported (ref. 11-18)
including standard configurations, and various aerodymamic components such
as blown flaps, cavities, d-type surfaces, trailing edge interaction, and
three-dimensional effects.



The results of these studies confirm the dominance of the jet flap flows
as noise sources. A theoretical analysis would be directed at characterization
of the basic mechanisms, and would require detailed information regarding the
associated turbulent flowfield structure, particularly in the wake region down-
stream of the flap trailing edge. Assuming the appropriateness of time-averag-
ing, such data is potentially determinable by numerical solution of appropriate
subsystems of the governing Navier-Stokes equations. For attached aerodynamic
flows, the appropriate system is the boundary layer equation set, the numerical
solution to which is routinely accomplished using mixing length theory for tur-
bulence closure and any of several available solution algorithms. For free-
mixing shear layer flows, as occur in the primary and downstream secondary mix-
ing regions, the boundary layer set coupled with a turbulence kinetic energy
closure model and algebraic length scale, is appropriate for a symmetric geo-
metry. The wake flow within the immediate vicinity of the trailing edge is
significantly more complex, and a complete analysis in the general case would
require use of the full Navier-Stokes equation set. Such analysis could be
extremely expensive, however, and simplifications have been proposed. For
example, Melnik and Chow (ref. 19) employ a matched asymptotic analysis to
characterize the trailing edge flowfield in a triple deck structure for lami-
nar flows, with extension to turbulent flows for a symmetric geometry (ref.

19, 20). Various forms of the boundary layer equation set have been employed
as well for symmetric geometries (c.f., ref. 21). Numerical predictions for
turbulent flows have been started somewhat downstream of the trailing edge,
where the velocity minimum moderated (c.f., ref. 22).

The present approach is to establish a parabolic approximation to the
Navier-Stokes equation set by employing an order of magnitude analysis. The
boundary layer equations are a simplified subset of the developed parabolic
system, the use of which is not constrained to a symmetric geometry. A two-
equation turbulence kinetic energy-dissipation function model is employed to
close the developed system for turbulence phenomena. For aeroacoustic flows
over flaps with sharp trailing edges, hence devoid of flowfield separation,
the developed equation system can be marched directly off the flap surface into
the trailing edge wake. Non-equitibrium turbulence phenomena within the imme-
diate wake flow is allowed, such that local extrema in the turbulence phenomena
can be predicted. The influence of a poarous-acoustic treatment of the flap
surface is simulated by appropriate boundary condition specification on the up-
stream boundary layer flow. The influence in the resultant wake flow is then
evaluated by direct numerical marching of the altered flow into the secondary
mixing region. The validity of the porous surface simulation, regarding
selected boundary condition equivalence, is evaluated by a complete Navier-
Stokes numerical solution for the flow within the immediate slot vicinity.

The developed parabolic concepts retain validity for non-separated three-dimen-
sional flows over finite span planar flaps.

The theoretical formulation of the aeroacoustic jet-flap flowfield model
is presented. A brief overview of the basic flow illustrates how determined
flowfield distributions may be employed in an aeroacoustic model. The required
equation sets are presented including appropriate boundary condition specifi-
cations as a function of the boundedness of the flow. A finite element algo-
rithm is employed to cast the developed equations in form suitable for direct
numerical solution. Results obtained using the COMOC computer program to solve
these equations are presented to validate the developed concepts.



SYMBOLS

a sound speed; boundary condition coefficient
A Van Driest damping function

c wall porosity friction factor

c coefficient

Cs skin friction

d differential

e alternating tensor

f function of known argument

F drag force

Fr Froude number

h slot nozzle height

H boundary layer shape factor

I farfield acoustic intensity

k turbulence kinetic energy

K generalized diffusion coefficient

2 differential operator; turbulence length scale
L differential operator; length

m finite element index

M Mach number; number of finite elements spanning R
n unit normal vector; nodes per element

p pressure; generalized parameter

P Stokes stress tensor

q generalized dependent variable

Q generalized discretized dependent variable



Re

oR

6*

domain of elliptic differential operator
Reynolds number

acoustic source term; finite element assembly operator
time

Lighthill stress tensor

velocity vector

reference velocity

friction velocity

scale velocity

observer distance

Cartesian coordinate system

Cartesian coordinate system

friction velocity Reynolds number
acoustic model parameter

acoustic model parameter

closure of solution domain R

Kronecker delta; boundary layer thickness
boundary layer displacement thickness
turbulence dissipation function

angle: boundary layer momentum thickness
Karman coefficient (MLT)

multiplier; turbulence sublayer constant (MLT)
dynamic viscosity

kinematic viscosity



o density

mean flow Stokes stress tensor

O'-ij

i3 Reynolds stress tensor; wall shear stress

) finite element functional

X generalized initial-value coordinate

v streamfunction

) turbulence damping factor; frequency; vorticity
Q solution domain

Superscripts:

e effective value

T matrix transpose

+ turbutence correlation function

- mass-weighted time-average

—_— time average

~ unit vector

- mass-weighted fluctuating component; ordinary derivative
* approximation

Subscripts:

o global reference condition

e freestream reference condition
isdsko2 tensor indices

J jet reference condition



- non-tensor index

m finite element domain

) initial condition

t time derivative; turbulent
W wall reference condition
Notation:

{1} column matrix

[] square matrix

U union

N intersection

€ belongs to




METHOD OF ANALYSIS

Problem Description

The general configuration for the aeroacoustic flowfield of interest is
shown in Fig. 1, illustrating a source of high momentum fluid flowing over an
aerodynamic surface subject to acoustic modification. The flow leaves the
surface at a sharp trailing edge, tangent to the mean chord, in accordance
with the Kutta condition, and proceeds to equilibration with the freestream.
It is assumed the flow is essentially unidirectional and parallel to the x,
(curvilinear) coordinate as shown; hence u, >> u,, u, where uj is the
velocity vector.

Jet Flow Flap Deflection
Pattern Angle (°)
----- 20
60
— - —— 60 (Partially
Detached)

Figure 1. Schematic of Representative Jet Flow Patterns
Over Wing/Flap Surface, M, = 0.8 (ref. 18)

The point of departure for establishment of an acoustic model is the
theory of Lighthill (ref. 2, 3). Based upon an exact analysis using first
principles, Lighthill established that the partial differential equation
governing propagation of sound in a homogeneous medium at rest is

327, .
%p _ 2 8% . __ij

where ao is the reference sound speed, and the solution domain is assumed

devoid of solid surfaces. Equation (1) is recognized as the wave equation;

it possesses the retarded-time solution, expressed in terms of the perturbation
to the mean density at the point X5 o and the source strength distribution

at Yi » in the form

S =L 9?2 [x - yl) __dy
P - Py 4wa§ axiaxj JTij[y’t - a, |x -~ Y]



The noise source mechanisms are described by the Lighthill stress tensor,
Ty the right side of equation (1). They consist of the instantaneous
coﬂvective accelerations and force terms as

.. = .U, + p.
T pu1uJ P;

— 2 . .
i j " %P5 (3)

The Pjj tensor contains the pressure and local viscous stresses and is

expressed as _
au, ou Ju
= _1 i _ 2k
Pij = paij ¥ u[}xj * 95 3 3%y 61;}

(4)

A useful characterization of the terms in equation (3) is obtained by
decomposition of the velocity field into mean time-averaged and fluctuating
components as

ug =0y o+ oug (5)
Hence,
T.. =o(t. + u(U. +u’) +pP . - a2
ij = el + up)(Ty + ug) + P a0 855 (6)

Evaluation of the second derivative of equatioh (6) is requ{red; applying the
continuity equation, the_instantaneous source term of the acoustic equation
in mean velocity field uj is

32T, .
S = T1\] =

= = T.. .
3x18xj 1j2J1

= U, U = + U._.U. ) - 2U. . Ul ..
Py, 505, 5 * Uaqlly,g) - 2050, 50 * Uiy, 4

+

(puz) . + 2(0; spui)

3*PYg i,3PY3),5 + (puju3)

zu'i’ 2] i3 s'iJ

+ pisos: = 82p. .. | 7
Pigsgi 7= %0 Py (7)



The density derivative terms are removed by a Galilean transformation. For
small Mach number, temperature effects may also be neglected, which deletes
the last two terms of equation (7). The source term that requires evaluation
then becomes, in a moving reference frame

~

* = p(U . Us U, . :(pus)..
S p(uj,iui,J + u1,1uJ’J) + 2u1,J(puJ),1

+ z(u'i"ipuj)’j + (puiuj)"ij (8)

Previous analyses for elementary jet and wake flows have idealized the
mixing layer by the assumption that only U, is non-vanishing and that it is
independent of x,. This removes the first and third terms in equation (8)
and simplifies thé remaining summations. For the jet-flap flows of interest,
however, the assumption that ;= U,(x,) 1is inappropriate, especially at the
flap terminus where large local accelerations can occur. The assumption on
transverse mean velocity remains valid, however, which yields

S* % 2y 5loug) g * 200y geug) 5+ (euiug) 5 (9)

The third term in equation (9) was originally analyzed by Proudman
(ref. 23) using an isotropic turbulence model for free jets. The lead term
was first identified by Mollo-Christensen & Marasimbo (ref. 24). 1In the
terminology of Lilley (ref. 25) the third term is called the "self noise"
due to its quadrupole nature. The first term is called the "shear noise"
since the shear components are modified by the mean velocity derivative.
The potential importance of the second term stems from the existence of the
terminus of the trailing edge, a location experimentally verified to be a
strong acoustic source.

Substitution of equation (9) into (2), and utilizing a Galilean space-
time transformation, yields the solution expressed in a reference frame moving
with the flow as

0 2ma M2 »J ot M 2maZM 1,177

Xs X:Xs
j ~ 2 - i"j 92 P
+ ——U ar(ous) + —1Jd 9 (5u-y2)|d
F omage 11T e (P 1“3’] T (o)

The farfield noise intensity has been determined from the variance of
equation (10) in a fixed reference frame, as

I(x) = Z—é[p - pol,[p - po]j (11)
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The product is understood to include all possible tensor combinations. The
overbar indicates time-averaged and equation (11) represents the noise
intensity measured at observer location x due to all coherent sources.

Evaluation of integrals in equation (11) is complex; modeling can be
employed -to express the covariances in terms of correlations of the turbulent
flowfield. Equation (11) becomes a single evaluation in a uniform mean flow
with isotropic turbulence since only the self-noise term persists. Proudman
(ref. 23) evaluated a simplified model using the concept of an eddy volume,
beyond which significant coherence vanishes. He established the intensity at
a point in the farfield for a moving reference frame as

o - 380, (k) /2| x|*
T g (12)

In equation (12), k ié turbulence kinetic energy

1 -,
k = 5uUsU%

2 11 (13)
which for isotropic turbulence is uj u; . The turbulence dissipation function
e is defined as

1] ~ axk axk (14)

where v 1is the fluid kinematic viscosity. My is an eddy convection factor.

The derivation procedure of Proudman was applied to the mean shear noise
term of equation (9) by Lilley (ref. 25). Under the assumption of isotropic
turbulence, the farfield intensity is

3616 ]
I(X) =C 5_)(; k2 (15)

where C 1is a constant and & 1is a longitudinal turbulence length scale.

Use of the concept for an axisymmetric free jet was proposed by Moon and
Zelazny (ref. 26). For this case, the shear noise term, equation (9), is
non-vanishing for Jj = 2, and several additional terms result from the-
-summation implied by the repeated subscripts in the self noise term. In the
fashion of Lilley (ref. 25) and Csanady (ref. 27), noise was assumed radiated
at two dominant frequencies. The time dependence in equation (11) was expressed
in terms of these frequencies and appropriate eddy decay length scales.

11



Applying a directivity term for the free-jet shear layer flow, devised from
geometrical acoustics theory (Csanady, ref. 27), and integrating over
appropriately defined eddy volumes, the derived form for equation (11) was

i 2 b g 52
Bse O* Uge %1 *p %3 (ur ui)

_81r2 [x]2 o, ag [(1 - M_cos)? + oz:e Mg] 5/2

2 N -
(i 2 w2 “0”)2 L “1”Y2 «in2 2
. 3lij] Bg % 6 L % 23 {(ulur) coso + (urur) sin2e cos e} i«
~Qor 2 (|2 5 _ 2 4 2 M2]13/2

2n2 | x| Po 35 [(1 M. cos 8) taZy Mc] /

(16)

The two terms radiate at the self noise and shear noise frequency
respectively. The farfield intensity is an integral over the source field
modeled in terms of turbulence parameters, i.e., components of the Reynolds
stress tensor. For elementary two-dimensional or axisymmetric boundary layer
and shear layer flows, the significant shear component of the Reynolds stress
can be expressed as (cf., ref. 28, 29)

3,
S 1
-usu; = Ck*ge L—%
172 d X, | . (17)

where C is a constant. The dissipation Tength scale &4 1is a function of
k and e as

3
fq = Kk /2 e”!
: (18)
Substitution of equations (13), (17) and (18) then yields equation (16) an
explicit function of the two-dimensional distributions of turbulence correla-
tions and mean flow shear.

The present focus is the more complex attached aerodynamic flow over and
downstream of the terminus of a flap with a sharp trailing edge. Added
complexity results from U, becoming a function of both x; and x,;

U, and U, remain negligibly small to first order. Several additional terms
may assume importance in equation (9) as the summations now range over 1
and 2. Hence, both x, and x, derivatives of u,; , as well as the turbulence
correlations and severai cross-product terms would result. A computational
study of the basic flow geometry could initially focus on establishing detailed
distributions of U, and turbulence correlations, for example, k, e and 24

and their derivatives.

12



The Flowfield Equations

The basic aerodynamic character of the jet-flap flowfield has been
illustrated. It is required to establish subsets of the governing Navier-
Stokes equations that adequately describe the fundamental flow character and
are also amenable to numerical solution. In Cartesian tensor notation, with
summation implied for repeated latin subscripts, the non-dimensional form for
mass and momentum conservation for flow of a compressible, single-species,
isoenergetic perfect fiuid is

L(p)_ E %‘1+ ﬁ;(puj) =0 (19)

L(phi) - Re‘loi.] + Fr'lpbi =0

3 2
Ef(pu’i) + W[DU-W + pé j

I W (20)
The dependent variables in equations (19)-(20) have their usual interpretation
in fluid mechanics where p is mass density, u; is the velocity vector,

p is the static pressure, b is the body force, Re is the Reynold's number
and Fr is the Froude number. The Stokes stress tensor, 43 is defined in
terms of the dynamic viscosity u as

G_':_:'uai.}a_uj_ _?_E—Bu_ks..
ij axj X 3 9%, 1] (21)

The Navier-Stokes system, equations (19)-(21), becomes amenable to
numerical solution techniques in a practical sense only after time-averaging.
Employing the Reynold's decomposition (cf., ref. 30), define

1_ i i (22)

where Gi is the mass-weighted, time-averaged velocity

1}

Us

pu'i
1 P

(23)

and u{ are the velocity f]uctuatiqns about the mean flow. By definition,

tot T
ou7 = Tim L S )dt = 0 (24)
Cou; = 1im = | (pu; - pli;)dt =0
i Trco T J 4] 1 »
to

13



and

UL = PG, + pUl
Uty = PYYy T PHEY (25)

The time-averaged equivalent of the Navier-Stokes equations (19)-(20) becomes

- _ 3p d (=% \ =
3(pu;) =
=y L i 9 [~ o D (=
L(pl;) = —5g—+ aij?“j“i " ax; (5,5 - pujuj) (27)

where aij is the time-averaged mean flow stress tensor,

_ 19 ou . ou
O M 1 + J _ g— kG (28)
1] Re ij axi 3axk 1]

In eqn- 28, n 1is the time-averaged dynamic v1scos1ty, and the fourth term
in the divergence is called the Reynolds stress tensor T4

-,

fig = P (29)

We seek approximations to the steady-flow, time-averaged Navier-Stokes
equations that yield adequate flowfield descriptions that are economically
amenable to numerical solution using present day computers. One simplication
is the parabolic approximation which can yield three~-dimensional flow descrip-
tions while requiring only two-dimensional computer storage. The three-
dimensional parabo11c Navier-Stokes equations (3DPNS) describe steady, confined

or unbounded, v1scous and turbulent flowf1e1ds where1n

14

1) a predominant f]ow direction is un1form1y discernible,

2) only in this direction are diffusion processes negligible
compared to convection, and,

3) no significant flowfield disturbances are propagated upstream
against the predominant flow.

Figure 2 illustrates the basic rectangular slot nozzle-planar jet flap
configuration of interest, including representation of a finite element
discretization and flap surface treatment, which is amenable to flowfield




Finite Element Triangular Discretization
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Added Discretization
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.Fig. 2 Three-Dimensional Representation of A Rectangular
Slot Injector - Planar Jet Flap Configuration
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characterization using the 3DPNS equation system. The predominant direction
of flow is assumed parallel to the x; coordinate. The parabolic approx1ma-
tion to equations (26)-(28) is accomplished by eliminating diffusion in this
direction; hence, equation (28) becomes

i(1- Gl)ﬁu uj gmms .
Uij Re L?x 30X 3 X ij (30)

The mean flow unidirectionality assumption will also affect terms retained
in the Reynold's stress model, as discussed in the next section. The sub-
script bar notation denotes the index not eligible for summation, but is
synonymous with the identical tensor index.

The 3DPNS equation system contains, as a subset, the familiar two-
dimensional boundary layer (2DBL) and two-dimensional parabolic Navier-
Stokes (2DPNS) equations. Both these systems are employed to predict the
jet-flap flow evolution on the symmetry plane of the three-dimensional
geometry illustrated in Figure 2. The two-dimensional geometry is illustrated
in Figure 3, including labeling of the primary and secondary mixing regions.
For illustration, the 2DPNS equations in expanded form are

a(pl,)  a(pl,)
- 1 2 (31)
L(p) = + =0
Bxl sz
ol ou = au
o N e ) - 2 ap 1 93 i]
L(pt,) = pl, 57— + Al o
1 193xy 2 9%, 9%y " Re X, BXZJ (32)
3 - 3 o —
- a_xl‘['p”l“l " B, ['9“1”2:' 0
ol ol = ol
mm oy o= 2 o 2 op _ 1 5 |-"72
L(DUZ) Py 3x * Pl oX ax Re 3x, [ 3x
1 2 2 2 2
(33)
a - . 3 o, —
- 5@[‘9”1“2] - ﬁ‘z‘[““‘z”z] =0

16
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The dependent variables in the 3DPNS and 2DPNS system are the mean steady .
flow vector Uj and pressure p. For a two-dimensional boundary layer, the x,
pressure gradient is known from the freestream flow, and impressed across the
boundary layer thickness. " According to the same order of magnitude analysis,
equation (33) vanishes identically to first order, yielding a second-order
balancing of perturbation in pressure to the Reynolds stress normal component
as

a - -
L = ————[ + pu u:] =0
(p) e LI (38)

Closure of the 3DPNS system requires specification of Tijs the turbulence
model is discussed in the next section.

The essential differential character of the 3DPNS momentum equation is
initial-value in the x, coordinate and bounday value on the (x,, x3) plane.
Hence, given an initial distribution of ., equations (27)-(28) are marched
downstream parallel to x;, and boundary cdnditions are imposed on the flap
surface and at all lateral locations whereat the viscous jet flow merges with
the assumed inviscid freestream. The starting solution plane and the location
of boundary conditions specification is denoted in Figure 3 for the two-
dimensional case. The boundary condition location for a three-dimensional
case occurs everywhere along the outer extremity of the finite element grid
illustrated in Figure 2. Correspondingly, on this closure segment, the jet
velocity asymptotically matches the freestream value which is enforced as a
gradient boundary condition. The velocity vector vanishes identically on the
flap surface segment, Fig. 2-3, except if the flap is assumed porous, where-
upon i, takes on a specified non-zero value, i.e., Uy (x;, 0, x3) =V,
(x,5 X3). For the planar flap symmetry plane cases studied, the freestream

pressure is uniform; therefore, to first order, the pressure is everywhere
constant, and equation (34) provides a second-order estimate of pressure
variation. The continuity equation (31) provides the freestream boundary
condition for solution of equation (33) for transverse velocity in the
secondary mixing region. For the boundary Tayer solution on the flap surface,
equation (31) is solved directly for U, as an initial-value problem in the
X, coordinate direction. Hence, a complete jet-flap flowfield solution
requires a switching of equation solution procedure as the flow departs the
flap trailing edge.

The second simplification applied to the time-averaged steady-flow
Navier-Stokes equations (26)—(28?, for evaluation of a porous jet-flap flow,
is reduction to two-dimensional space and transformation of dependent variables
to a vorticity-streamfunction description (cf., ref. 31). In subsonic flows
for which density may be assumed constant, equation (26) defines a divergence-

free field, pli; . From vector field theory, an equivalent expression on
spaces spanned by Cartesian coordinates is
awk
P~ = J-1 —_
Py = 97 Cgk05x, (35)
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where e1jk is the alternating tensor, J is the determinant of the metric,

and ¥, is the streamfunction vector. Substitution of equation (35) into
(26) y1e]ds an identity in zero. A useful transformation of equation (27) is
accomp11shed by def1n1t1on of the vort1c1ty vector

auk

1Jk axJ ' (36)

For two-dimensional problems, the sole non- van1sh1ng scalar components for
both wh and’ wg correspond to k = 3, in which case an elementary 2DNS
ti ti

1
w; =3¢

differential equation set can be established. Denoting the x; components of
¢k and - w, as Y and w, respectively, the compatability equation results
from substitution of equation (35) into (36) yielding,

L) = 221 *’"’J -0
e (37

Taking the curl of equation 127) to eliminate the pressure and substituting
equations (35)-(36), yields the two-dimensional vorticity transport equation
(cf., ref. 31),

520, 2 | oy ., 8 -
L{w) = 3t ©3ki aka ox; +-axj‘°ij - pujuj {] (38)

where 513 is defined by equation {(28).

Equations (37)-(38) can be employed to evaluate two-dimensional transient
Tow speed aeroacoustic flows wherein separation and recirculation are dominant
features. Their use is appropriate, for example, for a detailed analysis of
the flow departing a blunt trailing edge of a jet flap. For the present study,
this equation set was solved for the recirculating flow within the immediate
vicinity of a simulated porous slot on the jet flap surface, see Figure 3.
The solution domain is shown in Figure 4, along with a representative finite
element discretization.
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Fig. 4 Porous Slot Flow Solution Domain
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Flow enters from the left, and the base of the slot region is assumed porous,
hence a source or sink for mass. Equations (37)-(38) are both boundary value
problem descriptions, hence boundary condition specification is appropriate
about the entire closure illustrated in Figure 4. Any specified inlet/outlet
yelocity defines both y and w, using equations {35)-(36). Along the solid
flap surface, P is a constant and the no-slip boundary condition equ1va1ent

for w is (cf., ref. 31)

[1] =
w

I |o-l

EL._ .
dx (39)

where x, is the coordinate normal to the wall. Since equation (38) is

also initial-value, the initial vorticity contour w, _is determined from a
spec1f1ed velocity distribution using equation (36). The initial distribution
for ¢ is obtained from solution of equation (37) using wg.

The identified partial differential equations systems are potentially
useful for determination of the turbulent aeroacoustic flowfields characteristic
of the basic jet-flap geometry. It remains to establish a closure model for
turbulence phenomena, to allow determination of the Reynolds stress tensor in
terms of computational variables.

Turbulence Closure Modeling

The operation of time-averaging has introduced the Reynolds stress into
the Navier-Stokes equations as well as the simplified subsystems identified
for analysis of the jet flap flowfield. The primary requirement is for
development of a closure model for the steady flow parabolic approximation,
since the presented full Navier-Stokes analyses are restricted to flows
dominated by wall damping. Using well known procedures (cf., ref. 32), the
exact partial differential equation description for the kinematic Reynolds
stress -u; u: in a steady mean flow is

i
L - 3l ol
us uJ) = gii(u us ) + uJuk Bxk + uzuy 5;;
Jusou us <
+ b 3 8 J P_E;—u.l_ auJ:l
Xy X o[8x; X (40)

3 duzu 3
+ P - .
axk UjusUg v axk * _{saku TS J)

where v is the kinematic viscosity, u/p.
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Equation (40) is the departure point for development of a closure model. An
additional differential equation for turbulence dissipation rate e is
required; assuming the process is isotropic,

©odusaul
2 = __1_\]_ .
38i5¢8 = 2v 8% 8}, (41)

The exact transport equation for dissipation function e is (cf., ref. 30).

5 Bui dui duy azu; 2
L{e) = =—{lipe) + 20 s o =— + 2|V =
axk k axk ax2 X axk'ax2

2

5 |- . 2Yj 3uj v op %Y%| _ (42)
YoV Y% oa ok, b ook, axa]

k| 2 2 i ] :

!
Equations (40)-(42) represent seven additional partial differential
equations describing turbulence phenomena. However, this system is not
closed since the third order correlations remain undefined. Additional
differential equations could be established, but they in turn would involve
undefined fourth order terms. Hence, modeling of third order correlations
is invoked at a level of completeness, dependent upon the dimensionality and

‘geometrical complexity of the physical system. For example, Launder et al

(ref. 33) present closure in terms of all components of —u{uji They document

validity of the model for several cases including isotropic turbulence, free
shear flows, elementary duct flows and flat plate boundary layer flows.

In earlier work, Hanjalic' and Launder (ref. 29), establish a closure
applicable to thin shear flows where in only -ujujis retained, and solved in
" combination with € and the turbulence kinetic energy k defined as

k

t

1——
=usuz
2 11 (43)
For the uni-directional, shear-dominated flows of primary interest, wherein
,>> @,, Ui,» the contraction of equation (40) yields, after application of
the parabolic approximation,

, D s ) -1 3k
L(k) = U.k) - C m—|k2e71 =
axj J ) k axz[ ax%] (44)
_— 3&1
"W, f e 0



Equation (44) defines a new summation index convention appropriate for 3DPNS
as, 1<i,j <3 and 2 < & '<3. The corresponding form for the dissipation

equation (42) is

_ 9 n B[, -1 o
L(e) = g Aize) - C ax.["E uzu3 ax.:l
J 1 J
T R w—l + 22kt =0 (45)
e 1°8 sz €

In equations (44)-(45), the various constants C, are determined from approx-
imate analyses and/or computer optimization (ref. 33).

The next level of simplification involves specification of an effective
turbulent diffusion coefficient wv¢. From first principles (cf., ref. 32),
the effective diffusion coefficient must be of the form

Q = (:Vi
t (46)

where C 1is a constant, V a scale velocity; and & a scale length. For
the turbulence kinetic energy-dissipation function two equation closure
hypothesis (herein named TKE), V is taken as the square root of turbulence
kinetic energy, equation (43). A dissipation length scale 24 defined in

terms of k and e (ref. 34) is,

= 3/2 ~1
The TKE closure hypothesis then specifies
o s 1y "
V¢ Cvk £
(28)

Note that this is precisely the diffusion coefficient for turbulent kinetic
energy, equation (44). Furthermore, upon summing the diffusion terms in
equation (45), using equation (43) and assuming isotropy, equation (48)
yields the diffusion coefficient for dissipation function as well.
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To close the 3DPNS mean flow system, it is also requ1red to model the
correlation between the shear components of the Reynold's stress tensor and
k, € and the mean velocity field U;. Viewing equation (30), and neglecting
dilitation, the required relation 1s assumed of the form

) au1 'au2 '
ST o (49)
The subscript bar indicates the index not e1igi51e for summation. The elements
of the correlation tensor Ciz are determined from a simplified analysis or

experiment; the index range is restricted under the parabolic assumption.

For the analysis reported herein, the 2DPNS and 3DPNS equation systems
are closed assuming that C;y 1in equation (49) is a diagonal gensor. The
overall effective d1ffus1on coeff1c1ent can then be written as

e . 1- -
U = pgH + PV (50)

The 3DPNS equation system for steady mean flow and turbulence closure, using
the defined two-equation model and effective diffusion coefficient, then
becomes .

o D y=m oy L (51)
L(5) -E‘(Dui)-o
(52)
L(i.) = =2 (p ) - 2 [-e 9Y; + 362} + 9P =g
i axj PUs Y axllf ax, axiJ X
e i ol ol
R . 9 (1 3k e 1771 -
L(k) = =—(pt.k) - =—le———] -4 =—x—+pe =0
ax] J X, Prk X&J X, 3%, (53)
e . | du, 3l
I R 9 [y~ 3e -.e 1771
L(e) = == (pli.e) - —|s—=— - Clek —
axj J ax2 Pré x._ € ax2 ax2 | (o)
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The tensor indices range 1 < i,j <3 and 2 <& <3 for 3DPNS. For

symmetry plane analyses using 2DPNS, 1 < i,j <2, 2 = 2 only. Hence, since

i =1 corresponds to the direction of predominant flow, diffusion is restricted
to the plane transverse to the x, coordinate, as required by the parabolic
assumption. The recommended values for correlation coefficients for shear
layer flows are given in Table 1 (cf., ref. 33, 34).

Table 1

Coefficients in TKE Closure Model

Variable ‘Equation No. Coefficients
Vit (48) Cy = 0.09
k (53) Pri = 1.0
€ (54) Pro = 1.3, C; = 1.44, C2 = 1.92

The boundary conditions for the mean flow equations have been described.
Since the TKE equations {53)-(54) are also initial-boundary value descriptions,
it is necessary to establish appropriate statements. Referring to Figure 3
for example, the levels of k and e vanish in the non-turbulent freestream
flow. Since the Reynolds stress hypothesis is valid only in regions where the
turbulent Reynolds number is large, it is not economically feasible to enforce
k and e to vanish at the flap surface. The alternative selected for these
studies is to use boundary layer mixing lenath concepts to determine the
distributions of k and & near the wall. Mixing length theory (MLT)
expresses the correlation in equation (46) in terms of the predominant mean
flow gradient and a length scale & (ref. 35),

poo aﬁi
= welke | —
axz

<
I}

(55)

where 2 is the mixing length

{sz 0 < Xp < Adk™!
2= 1
AS Xo > }6K (56)

and w 1is the Van Driest function that accounts for the wall influence on
veiocity fluctuations.
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w= 1 - exp(-x,A"1) (57)

In equation (56), x, is the coordinate normal to the flap, & 1is the
boundary layer thickness, and A and ¥ are constants (0.09 and 0.435
respectively). In equation (57), A 1is a function of many factors influencing
flow phenomena near the surface including axial pressure gradient and normal
mass flow addition. The form of Cebeci and Smith (ref. 32) serves to unify
the many formulations as

L0\ |
A = A+vN'1ri% zkgi |
P o
W W (58)
where
\Y pezi Yw + \)w +
N2 = ;;—5;- ¥ 1- exp|11.8 = v + exp|11.8| v (59)

A11 variables are time-averaged steady components, subscripts e and w refer
to freestream and wall values respectively, A+ 1is a constant (25.3), and
Ty 1S the skin friction. Pressure gradient and mass addition effects are

accounted for accordingly as

P = 3 | d
iy )1 (60)
+ - -1
vioE ug Vi, (61)
where Ug is the freestream axial velocity, Vw is the specified transverse
wall ve1ocity, and u. s the shear velocity '

_ |Twl®
“r = % (62)
The shear stress, T, 1is defined as

Bﬁl
Tw = PwVy '872_ (63)

w
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The Ludwieg-Tillman formula (ref. 36) yields

T, = sp U2 0.246(10)'0'678HRe'0'268:|
w 27e le ) (64)

where Ree is the Reynolds number based on boundary layer momentum thickness,
and H = 6*6~' where 6&* is the displacement thickness (cf., ref. 35).

Equations (55)-(64) provide the formalisms necessary to determine k
and e near a solid surface. These same concepts are employed to complete
turbulence closure for the two-dimensional Navier-Stokes solutions for the
pore slot recirculating flow, by identifying for equation (38) (cf., ref. 31),
where u€ is given by equations (50) and (55).

2 a[. ] _ 9 | e duw u®
€ap s 5 |m—|0:s - pUsU: = u - w
3ki axk[}xj ij i J.} axk[ 3xk Xy

Furthermore, through the dual definitions of turbulent effective viscosity,
equations (48) and (55), and since the latter involves functions only of the
mean axial velocity component U, which is either known or readily initial-
ized, a means is established to initialize distributions of both k and ¢
at the node points of a discretization. Since the developed TKE partial
differential equations are initial-value, this information is required to
start a solution. Additional comments on verification of this procedure are
presented in the Appendix.

(65)

The closure for turbulence phenomena is complete at the Tevel of sophis-
tication selected for these studies. The partial differential equations
governing the flowfields of interest are now closed. Al1 boundary conditions
have been appropriately identified for partially and completely unbounded
solution domains. The initial-valued character has been noted, and means
established to initialize required distributions in terms of readily available
data. Numerical solution of the developed system can provide the detailed
distributions of mean flow and velocity fluctuation correlations required
for a theoretical analysis. It remains to establish the numerical solution
algorithm for these equations.

FINITE ELEMENT SOLUTION ALGORITHM

The desired form of the various partial differential equation systems
governing the aeroacoustic jet-flap flows of interest are developed. Each
is a special case of the general, second-order non-linear elliptic boundary
value partial differential equation

= 9 g 29 99 v 99| _ 66
| L(q) axJK axj + fltq,axk,p,xi] + fz[ul,%(—] =0 (66)
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Herein, q 1is the genera11zed dependent variable, the tensor indices range
2 <k,2 <3 and 1<1i <3, K is the diffusion coefficient, f, is a
funct1on “of its argument that specifically includes three-dimensional con-
vection, p 1is a generalized solution parameter, and f, 1is the initial-
value operator. The boundary condition statements for each of the dependent
variables can be concisely expressed in the form

z(q) = a(l)q + a(2) K_;J)é_ﬁz + a(3) =0
- . . . 2‘ . .
i.e., the normal derivative of q 1is constrained by q and a parameter as

determined by specification of the z{i). An initial condition is required
for q identified with each dependent variable as,

(67)

q(x(o),xz,x3] = qqy(%55%3) (68)

The finite element solution algorithm is based upon the assumption that
L(g) is uniformly parabolic within a bounded open domain Q@ ; that is, the
Tead term in equation (66) is uniformly elliptic within its domain R, with
closure B3R, where

Q= Rx[xo,x) (69)

and xo s X. For the 3DPNS equations, x is associated with the x, coordinate.
For 2DPNS, it is time. Equation (67) expresses functional constra1nts on the
closure of Q,302 = 3R xfxO, ¥)» and the initial-condition specification,
equation (68), Ties on RU3R X xp-

The concept of the finite element algorithm involves the assumption that
each three-dimensional dependent variable is separable in the form

q*(k,xg) .=mq1(x) qy (%95X3)
(70)

The funct1ona1 dependence in q,(x,, x,) is represented by a polynomial in xg.
The expansion coefficients q Zan’be most conveniently expressed in terms
of the value of g*(X, Xp) at"the nodes of the finite element discretization

of R. Then, equation (70) takes the form

ar(xxg) = &1(xp) Qp (X) + dy{x0) Qy (x) + ¢3(x,) Q3 (x)

T .
{o(xg) 1 {Q0x)} (71)
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where the polynomials ¢(x,) are known functions of x, and x,; . Since
they are known, they can be differentiated analytically, e.g.,

% _ 3 (i orns
s = 500 aacos, (72)

Hence, there is no need to establish difference formulae to approximate the
differentiated terms in L(q).

The finite element solution algorithm is established for the equation
system (66)-(68) using the method of weighted residuals (MWR) formulated on
a local basis. Since equation (66) is valid throught §, it is valid within
disjoint interior subdomains @ described by (Xi’X) eR x[} »X)» called
finite elements, wherein UR, = R. The approximate solution for q within
R, X Xo’x)’ ca11ed-q$ (Xi’X)’ is given in equation (71). Therein, the
functionals ¢k(x£) are subsets of a function set that is complete on R_.

The expansion coefficients Qy(x) represent the unknown x- dependent values
of qn (Xi’X) at specific locations interior to R and on the closure 3R>

called nodes of the finite element discretization of R.

To establish the values taken by these expansion coefficients, require
that the local error in the approximate solution to both the differential
equation L{qg% ) and the boundary condition statement 2(q*) for 3RHpNIR # 0,

be rendered orthogonal to the space of the approximation functions. Employing
an algebraic multiplier A, the resultant equation sets can be combined as

> [ {o(xg)} Lqp)dr - AJ{¢(X2)}%(Q;)dT = {0}
R 3Ry NaR (73)

where % is the'mapping function from the finite eTement subspace % to the

global domain R, commonly termed the assembly operator. The number of
equations (73) prior to assembly is identical with the number of node points
of the finite element R.

Equation (73) forms the basic operation of the finite element solution
algorithm and of the COMOC computer program to be described. The Tead term
can be rearranged, and X determined by means of a Green-Gauss theorem:

3 ogq* _ 5g* ~
1002, W[K gx—g}d-r - § o)) k3R, ar
Ri R,

3 p _
- | = {o(xe) K d 74
R{n axz 2 axz T (74)
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For R, fI8R nonvanishing in equation (74), the corresponding segment of the
closed-surface integral will can?§3 the boundary condition contribution,
equation (73) by identifying Xa with K, equation (66). The contributions
to the closed-surface integral, equation (74) whereat B3R fIoR = 0, can also

be made to vanish. The globally assembled finite-element solution algorithm
for the representative partial differential equation system then becomes

S|_|.9_ og* * g
S 'Jax {¢} Ka—fl(zch + J{q;} (F] + f3) dr

%
Rm Rm

- J {4} [a(l)q* + a(3)_-ld~c = {0}

3aRyNAR (75)

The rank of the global equation system (75) is identical with the total number
of node points on RU3R for which the dependent variable requires solution.
Equation (75) is a first-order, ordinary differential system for 3DPNS. For
streamfunction in 2DNS, it is algebraic and the matrix structure is sparse and
banded. Solution of the initial-value system is obtained by COMOC using a
predictor-corrector finite-difference numerical integration algorithm. A
banded Cholesky equation solver is employed to solve an algebraic equation.

Solution is also required for the continuity equation (48) which is
retained for boundary-layer flows. Since it exists in standard form as an
ordinary differential equation, direct numerical integration yields the
required solution at node points of the discretization.
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COMOC COMPUTER PROGRAM

The finite element solution algorithm is utilized, as observed in the
previous section, to cast the original initial-valued, elliptic boundary-
value problem description into large-order systems of purely initial-value
and/or boundary value problems. The COMOC computer program system is being
developed to transmit the rapid theoretical progress in finite element solution
methodology into a viable numerical solution capability. COMOC integrates
or equation-solves the discretized equivalent of the governing equation
system. Initial distributions of all dependent variables may be appropriately
specified or computed, and boundary constraints for each dependent variable
can be specified on arbitrarily disjoint segments of the solution domain
closure. The solutions for each dependent variable, and all computed para-
meters, are established at node points lying on a specifiably nonregular
computational lattice, formed by plane triangulation of the elliptic portion
of the solution domain Q, i.e., RU3R.

The COMOC system is built upon the macrostructure illustrated in
Figure 5. The Main executive routine allocates core, using a variable
dimensioning scheme, based upon the total degrees of freedom of the global
problem statement. The size of the largest problem that can be solved is
thus 1imited (only) by the available core of the computer in use. The
precise mix between dependent variables and parameters, and fineness of the
discretization, is user-specifiable and widely variable. The Input module
serves its standard function for all arrays of dependent variables, para-
meters, and geometric coordinates. The Discretization module forms the
finite-element discretization of the elliptic solution domain and evaluates
all required finite-element nonstandard matrices and standard-matrix mul-
tipliers. The Initialization module computes the remaining initial para-
metric data required to start the solution. The Integration module consti-
tutes the primary execution sequence of problem solution, and utilizes a
highly stable, predictor-corrector integration algorithm for the column
vector of unknowns of the solution. Calls to auxiliary routines for para-
meter evaluation (effective viscosity, Prandtl number, source terms, etc.)
as specified functions of dependent and/or independent variables, as well as
calls for equation solving algebraic systems, are governed by the Integra-
tion module. The Output module is similarly addressed from the integration
sequence and serves its standard function via a highly automated array-
display algorithm. COMOC can execute distinct problems in sequence, and
contains an automatic restart capability to continue solutions. A discussion
on the functional design of COMOC is given in reference 37.
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NUMERICAL RESULTS

Numerical evaluation of the developed flowfield model can verify its
utility by assessing accuracy of predictions. In concert with examination
of a practical jet-flap flow, a test program was conducted to verify factors
affecting accuracy of the finite element algorithm, as embodied in COMOC, for
turbulent flow predictions. Both the MLT and TKE closure models were evalua-
ted, and a discussion of results is presented in the Appendix. The following
studies were conducted using discretizations and closure model combinations
so identified to yield accurate results.

Symmetry Plane Analysis of A Slot Nozzle-Jet Flap Flow

The basic geometry involves interaction of a high momentum flow with a
free-stream, over and downstream of the terminus of a planar jet flap, see
Figure 2. Many experimental configurations have employed rectangular slot
nozzles to form the jet flow, with aspect ratios (slot width to height) in
the vicinity of 50:1. Important three-dimensional effects are then limited
to the extremum boundary regions while the core flow approximates a two-
dimensional character. Experimental data were taken (ref. 38) on the symmetry
center-plane downstream of a slot nozzle-jet flap configuration of aspect
ratio 60:1. This case was selected to evaluate predicted distributions of
mean flow velocity and turbulence correlation.

The basic experimental configuration and computational solution domains
are illustrated in Figure 6. The jet flow is accelerated by the nozzle to a
mominal Uj = 120 m/s. Due to the associated favorable pressure gradient,
the ii; profile at the starting plane of the solution is nearly uniform.
Immediately downstream of the nozzle, the jet flow interacts with the free-
stream within the primary mixing region, and a turbulent boundary layer flow
develops adjacent to the flap which erodes the inviscid potential core at a
rate different from the free shear layer mixing in the primary region. The
flap termimates at & sharp trailing edge. Immediately thereafter, a secondary
mixing region is engendered between the jet boundary layer flow and the en-
trained flow. The initially zero u; on the flap surface is rapidly acceler-
ated within the immediate downstream vicinity of the flap terminus. The Targe
X, gradient of wu, associated with the turbulent boundary layer is conse-
quently dissipated, and acts in the process as a strong source term for gene-
ration of turbulence kinetic energy, see equation (44). Well downstream of
the flap, the slot flow approaches a jet bounded by two free shear-layer mix-

ing regions.

The computational simulation of this composite jet-flap flow was accom-
plished employing the 2DBL and 2DPNS solution options and the TKE closure
model. The flowfield solution was initiated at the exit plane of the nozzle
as noted in Figure 6. Since no experimental data were available to initialize
the solution, a uniform profile for uU; at the nozzle was assumed, and U,

k and ¢ were started at zero levels. (This corresponds to the slug-start
discussed in the Appendix.) The Tower portion of the nozzle flow was assumed
to develop on the flap as a boundary layer completely isolated from the primary
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mixing region shear flow by the jet potential core. This was considered
adequate, since experiment verified that the gradient-free potential core
persisted well into the wake, and the far-field pressure was the constant
associated with a free-jet flow over a planar surface. The free-shear Tayer
mixing within the primary region was initialized using a step-profile in U,
as noted in Figure 6, where the upper Uy entrainment velocity was estimated
from experimental data profiles at x,/h = 6.6, one-step height downstream of
the flap terminus (ref. 38). These boundary layer and primary mixing region
solutions were marched downstream and then matched together at the trailing
edge, Xx;/h = 5.6. A new solution domain was specified to encompass the two
flows, plus the lower entrained flow,and a 2DPNS solution initialized to pro-

ceed into the wake region, see Figure 6. Again, the lower freestream i,
entrainment velocity was estimated from data, and was assumed laminar at the

trailing edge. Boundary conditions for individual solutions within each
domain are also noted in Figure 6.

Using the 2DBL option, the flap boundary layer flow was started from the
assumed uniform nozzle profile by numerical solution of egquation (52) for u,
assuming laminar flow and the no-slip boundary condition, {,{x;, 0) = 0.
Following the few integration steps required to establish derivatives, solution

of equation (51) was initiated for computation of transverse velocity 0,,
assuming a non-porous surface. Following a few steps to allow equilibration,
the developing laminar boundary layer was tripped turbulent by signalling
computation of effective viscosity, equation (50), using the MLT model, equa-
tion (55). The U, and U, profiles thereafter rapidly transform into the
familiar turbulent profiles. The MLT solution was marched a short distance
downstream, whereupon k and e initial profiles were computed using the
dual definitions for v¢ equations (48) and (55). A restart of the entire
solution was accomplished, and the turbulent boundary layer allowed to develop
to the flap terminus using the TKE closure model, equations (53)-(54). The
wall damping influence was retained within the TKE solution by over-riding
the k and ¢ 1levels, computed from the differential equation solutions, by
those computed from MLT at all nodes lying inside the transitional layer.
ITlustrated in Figure 7 is the development of the turbulent boundary layer
profile in terms of the shape factor H. For a fully developed, Taminar in-
compressible flat plate boundary layer, H = 2.6, while for a turbulent flow,
1.3 <H < 1.6. The computed development spans the range.

The two-dimensional shear layer computation within the primary mixing
region was similarly initiated from a slug start. However, the computed Gl
profile at x;/ h = 5.6 exhibited a much larger potential core than did the
experimental data of x,/ h = 6.6. This indicates that the associated turbu-
lent mixing within the blunt base region at the nozzle face was grossly under-
estimated by the assumption of a thin shear layer. An accurate flow charac-
terization in this region would require a complete Navier-Stokes solution,
which could account for recirculation, as noted in the development. However,
since the primary focus is on the secondary mixing region evolution, and since
experiment shows the primary mixing region remains isolated downstream past
x1/ h = 6.6, the free-shear layer solution was simply continued downstream
a distance sufficient to erode the span of the potential core to essential
agreement with the data. The numerical profiles for u,, U,, k and e at one
slot-height upstream of this location were then emp1oyeé to initialize the
combined wake solution.
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The developed two-dimensional boundary layer and shear layer solutions
initialized the 2DPNS solution on the combined domain at the flap trailing
edge. The boundary condition specifications are denoted in Figure 6. Shown
in Figure 8 are computed distributions of U, at select downstream stations,
shown in comparison to experimental data at x;/h = 6.6. Excellent agreement
is illustrated, with the sole consequential di%ference at the wings of the
i, profile where the jet merges with the entrained flow. Shown in Fig. 9
are corresponding computed distributions of turbulent kinetic energy k, equa-
tion (13), in the primary and secondary mixing regions. ITlustrated for com-
parison is the measured normalized x, component of the Reynolds stress,

—u; u: (ref. 38, Fig. 24). Assuming isotropy, k and vuj ujy would be

directly comparable. Agreement is good within the secondary mixing region,
wherein the initially small Tevel at x,/ h = 5.6 has been consequentially
increased by the terminus of the flap. Considerably poorer agreement is
noted within the primary mixing region, a direct consequence of the less
accurate starting conditions as discussed.

The illustrated agreement tends to confirm the validity of the wake flow
initiation procedure as well as the appropriateness of the 2DPNS equation
system. While the flow regions illustrated are important, the strong inter-
action zone immediately downstream of the flap terminus is of primary interest.
The extremum mean flow gradients exist therein, both in the x, and x, coor-
dinate directions, and the corresponding generation rate of turbulence is
extremal. Shown in Figure 10 are axial mean velocity ﬁl profiles at various
stations downstream of the trailing edge. Note that the initial zero level
on the flap is rapidly accelerated to produce the typical shear layer profiles.
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Since a mean flow velocity gradient in the x, direction continually persists,
turbulence kinetic energy k is correspondingly generated well downstream of
the local acceleration at the trailing edge. Correspond1ng computed dis-
tributions o% turbulence kinetic energy are presented in Figure 11 at jdentical
stations downstream of the flap terminus. Following the initial maximum ac-
celeration, the peak turbulence kinetic energy along a locus parallel to the
flap in the wake continues to grow. The peak region broadens with distance
downstream, and eventually generates a stepped peak. As a direct consequence,
there results a pronounced overall increase in the level of turbulence within
the flowfield due to the flap terminating.

Numerical evaluation of spatial derivatives of U; and k 1in the wake
region could be employed in a noise model, for example, equation _(16) aug-
mented for the more general case. The peak x, derivative of U, immediately
downstream of the flap terminus is of the order 107, and decreases rapidly
to 10* one slot height downstream. The u derivatives in the x,direction,
which contribute to the shear noise term, are also maximum at the trailing
edge, rapidly decrease, and then continue to slowly decrease as the flow pro-
ceeds downstream. Ca1cu1ated extremal values of 3u;/3x, in the immediate
wake are the order 10°%, decrease to 10° at one slot height and .5 x 10°
two slot heights downstream The turbulent kinetic energy also contributes,
and the extremal x; derivative of k is of order 107. Lateral x
derivatives of k are also of order 107, and persist well downstream of the
trailing edge, as noted in Fig. 11. Recall that, as discussed, a noise model
may utilize the eddy volume concept, the assumed-bounded region over which
a non-zero correlation exists. A length scale for the eddy volume can be
extratted from the computed turbulence parameters, see equation (47). Extremum
dissipation lengths of .0075m and .0018m were calculated from the computed
k and e distributions. They compare favorably with .0082m and .0036m,
as determined from experimental longitudinal and transverse space autocorrela-
tion by Tam and Reddy (ref. 39).

Acoustically Modified Planar Jet-Flap

Treatment of an acoustically "hard" flap surface in the form of homoge-
neous or discrete surface porosity is experimentally verified to alter far-
field acoustic intensity (cf., ref. 5, 10). An aerodynamically-acceptable
procedure is to replace the hard flap with a mechanically-formed mesh surface,
through which mass flaw can be induced by generation of modest pressure
differences. Attenuation of far-field sound power level may primarily result
from alteration of the local turbulent flowfield, in particular_the mean flow
local shear stress distribution. Surface shear is basically 9u;/ 9x,, which
is the dominant source mechanism in unidirectional shear flows (see source
terms in equations (53)-(54)). It is also a mean flow contribution to the
"shear-noise" source term correlation for the Lighthill equation solution,
for example equation (16). The local value of shear at the flap trailing edge
can be expected to s1gn1f1cant1y affect the rate of momentum defect attenua-
tion within the secondary m1x1ng region, immediately downstream of the trailing
edge, see Fig. 6. Therefore, in this instance of interest, surface treatment
appears to induce acoustic modifications by alteration of the local detailed
flowfield structure.
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A computational simulation of the induced influence of surface porosity
is particularly direct, since the equivalent boundary condition statement is
a controlling mechanism of the numerical solution for the flowfield. While
the actual mechanisms of pressure coupling may be rather complex, an elemen-
tary extension of the two-dimensional configuration was evaluated to examine
the fundamental phanomenon. The acoustic surface treatment can be assumed
correlated by an elementary form of Bernoulli's equation.

Ap = -cp V2

In equation (76), Ap 1is the pressure difference across the porous surface,
pww s the resultant induced colinear mass flux, and ¢ is an experimental
friction factor. The pressure difference exists between the exterior flow
and a sub-surface cavity, which undoubtedly possesses a family of acoustic
waves travelling at the characteristic cavity frequencies. Hence, one expects
that Ap is a distributed function of x;; dependent upon the cited factors,

the induced V,, may be of variable sign and magnitude.

The concept was evaluated using the detailed velocity field for the
Bradshaw relaxing flow test case as discussed in the Appendix. This standard
case was altered by specification of a discrete and cyclic distribution of
Ap(xy), equat1on (76), as graphed in Figure 12a. The induced normal mass
flux ve1oc1ty, » acts directly as a boundary condition for solution of uz,
equation (51), ang indirectly as a modification to the turbulence wall damp-
ing function, equations (58)-(61). The flux period was approximately 0.02m,
the wave-form a hat function with peak value V,/Us = 0.001 (i.e., mass flow
into the cavity:, and the x; span of surface ureatment was approximately
0.15m. The flowfield variables were initialized from the standard case
solution. Shown in Figure 12b is the computed x, distribution of U, , at
the first finite element node above the flap surface (Tocated at x,/§ =
0.0013 , where & 1ds the local boundary layer thickness) in comparison to
the standard case results. This modest efflux accelerates the Tocal mean
flow by up to about 10%, with a corresponding increase in 3i,;/ 3x,. The
period appears equal to the applied pressure wave, and the phase lags by
about one-quarter of the period. The effective turbulent viscosity, equation
(50), computed at this node increased by approximately 8% at peak V » which
alters the corresponding value of k, equation (43) by about 15%. Reversal
of the sign of Ap would induce deceleration of U, by about the same mag-
nitude, and the levels of v® and k would be corresponding]y decreased.
Elsewhere, away from the immediate vicinity of the surface, the computed U,
profiles were unaffected by the wall phenomena for the periodicity and
amplitude evaluated. These results indicate that a very modest transverse
mass flux, as induced by a pressure difference across a porous aerodynamic
surface, can significantly alter the local detailed structure of a turbulent
boundary Tayer flow.

A corresponding influence on the Tocal source mechanisms for acoustic
phenomena could account in some part for measured alteration of farfield
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intensity levels. In particular, the exact distribution of i, and k at
the flap terminus, as altered by transmission over the modified flap surface,
could be important since this flow initializes the secondary mixing region.
To assess influences, the discussed two-dimensional hard flap configuration
of Schrecker and Maus (ref. 38) was computationally altered to induce a con-
tinuous distribution of surface porosity. The wave form approximated a sine
with amplitude V, /U, = * 0.03 and period Ax,/h = 0.04, where h_is the
slot nozzle heighf. In the downstream flap region, 5.0°< x,/ h < 5.6, the
standard case boundary layer flow was approaching fully turbulent with a shape
factor H = 1.6, see Figure 7. This flow was rerun with the cited porosity
distribution to determine the extremum induced modifications to H and the
computed i, directly above the flap surface. The results are summarized in
Table 2.

TABLE 2

Porosity-Induced Jet-Flap Flowfield Modifications

Case Velocdity 1
ANO. Description Transvéfse Longitudinal Shape Factor
S Nt IO ML VA H |
1 Standard (Hard) 0 0.092 1.63
2 Influx (Soft) +0.03 0.031 1.87
B 3 Efflux (Soft) -0.03 0.148 1.57

The period of the flow alterations agreed with the specified influence and
lagged in phase as discussed for the check case. _

A 2DPNS solution in the trailing edge wake was completed to assess the
influence of induced flowfield modifications upon evolution within the
secondary mixing region. Solutions were initialized using mean flow velocity
profiles for cases 2 and 3, that departed the furthest from the standard
case 1. Table 3 summarizes the results in terms of longitudinal mean velocity
and turbulence kinetic energy at two vertical (xz) levels and at several down-
stream stations. Even though the porous efflux case 3 is initialized with
larger i, , both the standard and influx cases produce higher { solution
levels by x;/h = 0.32. The standard case also produces extremal levels of
k at this station, even though the initial levels for the efflux case 3 were
five times larger. Note that by x;/h = 0.05 for the standard case, computed
Tevels for both U, and k are approximately 80% of those predicted at
x,/h = 0.32. Hence, the initial turbulence mixing phenomena within the
secondary mixing region occurs directly adjacent to the flap trailing edge,
and appears quite sensitive to the detailed structure of the turbulent boundary
layer flow at the flap terminus.
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TABLE 3

Distribution of Mean Flow and Turbulence Velocities Within

Initial Secondary Mixing Region as Function of Simulated Flap Surface Porosity

Coordinates - x;/h Mean Flow Velocity - ﬁl/Uj Turbulence Kinetic Energy -k/Uj2
Downstream Vertical Influx Standard Efflux "~ Influx Standard Efflux
(i=1) (i =2) Case 2 Case 1 Case 3 Case 2 Case 1 Case 3
0.0 0.0014 .031 .094 .148 107° 107° 107°
0.0 .0 .0 .0 .0 .0 .0
0.001 0.0014 .042 .081 .133 .0006 .0013 .0063
0.0 .032 .050 .09 .0005 .0020 .0044
0.05 0.0014 - .344 - - .0358 -
0.0 - .320 - - .0368 -
0.16 0.0014 .336 .378 .362 .0300 .0451 .0376
0.0 .327 .370 .355 .0300 .0436 .0374
0.32 0.0014 .389 414 .378 .0331 .0431 .0382
0.0 .384 .408 .373 .0335 .0431 .0382




of the attached turbulent boundary Tayer flow.

Recirculating Flow Within A Porous Slot

The discussed calculations confirm that transverse mass flux through a
porous flap surface can produce significant changes in the detailed structure

The influence of porosity was

exerted only indirectly on the {; solution through the wall damping function

and the
made of the direct influence within the immediate vicinity of a porous slot
by numerical solution of the complete two-dimensional time-averaged Navier-

Stokes system, equations {(37), (38), and (65).

standard case as exhibited in Figure 12a.

i, boundary condition..

Consequently, a computational evaluation was

The test geometry corresponds to the flow over the first slot of the
Both mass addition and deletion
The solution domain

through the recessed base of the slot were evaluated.
geometry and boundary condition specifications are illustrated in Figure 13.
Shown also is a representative discretization, illustrated with diagonals

removed for clarity, consisting of 304 finite elements.

The flow proceeds

over the slot from the left, and upstream and downstream boundary conditions
were established from the boundary Tlayer solution using equations (35)-(36).
Along the top of the domain, the gradient boundary condition on streamfunction
allows the flow to respond to the cavity presence, i.e., the closure segment
Vw was assumed a

is not forced to be a streamline.

Along the cavity base,

lTinear function of x, with a maximum efflux/influx of un;1 = + 0.015.

Xo A
=1, W _ 31‘[) o~ =
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Fig. 13. Finite Element Discretization And Boundary Conditions For
Slot Region Recirculating Flow Analysis
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The depth of the slot was approximately 0.5% of & the local boundary layer
thickness. The flow Reynolds number based on & and Us is 10°. The slot
Reynolds number based on shear velocity, equation (62), and slot depth, was 24,
indicating that the contained flow was fully dominated by wall damping. Hence,
the effective viscosity u® for all nodes within the slot was assumed laminar.
MLT was employed to compute v¢ , equations (55)-(64), at all nodes above the
original plate surface, as in the standard non-porous surface case. The top
node row of the solution domain 1lies within the fully turbulent flow.

Computed steady flow streamline distributions are shown 1n Figure 1l4a,b,
for mass removal and mass addition through the slot base, respectively. For
both cases, the far-field streamlines are computed concave downward indicating
the effect of presence of the slot permeates the entire domain. Somewhat less
concavity occurs for mass addition since identical farfield streamline levels
are plotted for each case. The detailed flow structure in the immediate
vicinity of the slot depends strongly on the sign of V. For mass removal,
Figure 14a, the boundary flow.generally overshoots the slot and circles back
along the base, establishing a closed circulation contour at the downstream
extremity. Mass addition, Figure 14b, appears constrained to the sTot region
with emergence into the main boundary flow occurring at the downstream step
face. Hence, within the assumptive constraints and for the specified boundary
- conditions, the more complete Navier-Stokes solutions further illustrate the
character of flowfield alteration induced by a porous surface. These results
are at best indicative however, since the flow through the cavity base was
specified a priori, rather than being coupled to resonance phenomena within a
sub-surface cavity. Nevertheless, they do confirm the potential capability
to ?umgrica11y establish detailed flowfield data.of impact in an aeroacoustic
analysis.

An Elementary Three-Dimensiona] Evaluation

The discussed numerical evaluations are constrained to flows on the
symmetry plane of a three-dimensional flowfield. The three-dimensional flows
associated with practical OTW configurations on airfoil surfaces, cf., Figure
1, are considerably more complex than amenable to analysis using the employed
equation systems. However, for a rectangular slot-nozzle-planar jet flap
geometry with quiescent freestream, such as that of ref. 38, an exploratory
evaluation of the potential of a three-dimensional solution can be established.
Remaining within the boundary layer order of magnitude analysis, equation (34),
and for the uniform freestream pressure field associated with rectilinear flow
over a non-1ifting surface, the mean flow between the jet symmetry plane and a
Tateral freestream, see Figure 2, can be approximated to first order as pre-
dominantly boundary layer with negligible lateral velocity (lis). Correspond-
ingly, transverse mean velocity U, can be initially determined over the flap
from the continuity equation solution equation (51), and thereafter by solution
of the three-dimensional U, momentum equation, i.e., i = 2 in equation (52)
and using equation (50).
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Fig. 14. Computed Steady Flow Streamline Distributions For
Turbulent Flow Over A Jet-Flap Slot.
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A finite element discretization (less diagonals) of the left-half
solution domain for the three-dimensional! jet flap of Figure 2 is shown in
Figure 15. Approximately 480 triangular elements are employed with non-
uniformity specified to resolve the wall layer immediately adjacent to the
upper and lower flap surfaces. The boundary condition constraints for the
example solution are noted as well. As the flow departs the sharp trailing
edge, the indicated wall boundary conditions are removed, as discussed for
the two-dimensional solutions. A variant of the slug start was employed to
initialize the solution field by interpolating the computed symmetry plane
velocity distribution for E to a zero level at the lateral freestream.
Following initialization and’ equilibration of the computed &, profiles,
closure for turbulence was switched from MLT to TKE, and the solution marched
downstream to a distance sufficient to smooth the solution field. The trail-
ing edge was assumed to exist at this point and the solution restarted with
the flap (i.e., boundary conditions) removed to simulate emergence into the
wake.

Shown in Fig. 16 is a surface representation of the computed equilibra-
ted U, distribution at the flap trailing edge. The grid imposed on the
solution surface is identical to the employed discretization which serves to
document appropriate refinement. The U, velocity beneath the flap is assumed
zero, and the additional grid detail therein has been omitted for clarity.

The computed distribution of k at the trailing edge is shown in Fig. 17a.
The centroidal spine is a consequence of the lateral derivatives of U, ,
i.e., 3u,/dx, as produced by the appropriate contour in Fig. 16 which serves
as a source contribution for turbulence kinetic energy, see equation (53).

The peak directly above the flap is the three-dimensional equivalent of the
results illustrated in Fig. 9. The extent and location of the flap is noted,
and the Tower discretization detail is again omitted. Fig. 17b illustrates
the computed k distribution at Ax;/h = 0.02 downstream of the flap
terminus, as well as the lower discretization. The surface shape is unaltered
everywhere except at the elevation of the flap terminus where a sharply spiked
double peak has replaced the single peak illustrated in Fig. 17a. Hence, the
existence of the trailing edge has resulted in rapid production of turbulence
kinetic energy in agreement with the results of the symmetry plane evaluation.
These three-dimensional predictions, while the result of a highly simplified
analysis for an elementary geometry, do confirm the potential to extend the
developed flowfield model to the three-dimensional configurations of practical
interest.
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Fig. 15. Finite Element Discretization For Three-Dimensional Solution
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CONCLUDING REMARKS

Simplified forms of the Navier-Stokes equations for describing aero-
acoustic flows over a basic jet-blown flap configuration have been established.
A finite element formalism is employed to cast the identified initia]-boundary
value equation systems for steady, time-averaged turbulent flows into equiv-
alent larger order systems of ordinary differential and/or algebraic equations.
Numerical solutions were established using the COMOC computer program.

Computed evolution of the turbulent flow on the symmetry centerplane of a
rectangular slot-nozzle-planar jet flap geometry, and downstream of the sharp-
edged terminus of the flap, compared favorably with experimental data. The
influence of a porous treatment of the flap surface on the detailed flow
structure on and downstream of the flap terminus, was evaluated using two
equation systems. An elementary extension to a three-dimensional flow con-
figuration was evaluated.

These results generally confirm the validity of the suggested approach
to characterization of the turbulent aeroacoustic flows associated with
directed-jet 1ift augmentation systems. In particular, use of the parabolized
approximation to the full Navier-Stokes system appears appropriate for turbu-
lent flows departing a sharp trailing edge of a planar flap. Extension to a
curved flap surface requires development of a more comprehensive equation
system, capable of computing pressure distributions in the plane transverse
to the direction of predominant flow. This system should also be capable of
predicting the entrainment induced by these lateral pressure gradients.
Analysis of aeroacoustic flows over flaps with a blunt trailing edge using
the parabolized equation systems is inappropriate in regions with flow separa-
tion and recirculation. The present results indicate that the more complete
analysis can be Tocally imbedded within a parabolic solution. In this instance,
additional attention is required to adequately accomplish closure for turbu-
lence phenomena in flow regions with small turbulence Reynolds number.
Extension to these areas should render the developed concepts directly appli-
cable to aeroacoustic flowfield determination for practical T1ifting configura-
tions.
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APPENDIX

Initiation and Accuracy of Turbulent Flow Prediction

A computational test program was completed to assess factors affecting
solution accuracy of turbulent boundary layer flows predicted using the
finite element solution algorithm. The standard two-dimensional boundary
Tayer equations (2DBL) are a sub-set of equations (51)-(54), with equation
(52) for j = 2 discarded and 2 = 2 only,elsewhere. Equations (53)-(54)
are solved for the turbulent kinetic energy (TKE) closure, using equation (50)
to evaluate effective viscosity. For mixing length theory (MLT), the turbu-
Tence kinematic viscosity in equation (50) is determined algebraically using
equation (55).

The three ewaluations required to attest to solution accuracy relate to
verification of mathematical order-of-accuracy, turbulent flow solution
initiation from an assumed mean-flow velocity profile, and the hybrid closure
model employing MLT concepts within the wall layer to provide boundary con-
ditions for the TKE solution. Regarding the first item, confirmation of a
formal order-of-accuracy is currently evaluable only for laminar flows. The
selected test case is laminar, incompressible flow at zero external pressure
gradient, the well known Blasius similarity solution (ref. 35). The funda-
mental error norm for a finite element solution is the energy norm (cf., ref.
40), defined for the linear equivalent of equatjon (66)-(67) as

_ 1 1
E(g,q) = §IK%%M - Afa( )qzdr

The 2DBL system is not Tinear, but the non-Tinearity exists in the Tower-order
convection terms only for laminar flow which would not constitute a quadratic
contribution to equation (A.1). Assuming the validity of eguation (A.1) for
the 2DBL system, and for use of simplex finite element functionals, equation
(71), convergence of the numerical solution is theoretically (ref. 40),

* 2 Sl 4
E(g-qp.q-ap) < CLy max | i | (A.2)

where C 1is a constant indépendenf of L, » the measure of the smallest
vl

finite element spanning R , and i} is the second x, derivative of u,

and assumed continuous on R. Hence, under discretization refinement, con-
vergence should be quadratic in the energy norm. Since the Galerkin criteria
for the finite element algorithm, equation (73), renders the error orthogonal
to the approximation base, the exponent of two in equation (A.2) can be
?ume§1ca11y confirmed by measuring the finite element solution energy, equation
A.l : '

. M aq* a\q*
E(q%,q*) = = Vol Kemldr - A a(l)q*ZdT
2m=1 axlaxg m (A.3)
Rn aRmnaR
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under discretization refinement. In equation (A.3), q% 1is the finite
element approximation functional, equation (71), ultimately evaluated in
terms of the computed nodal distribution of the mean longitudinal velocity
Us(x,sx,). Shown in Fig. A.1 is the computed finite element solution energy,
equation (A.3), evaluated at a specific x; station for 10 < M < 80, where
M is the nominal number of finite elements spanning R(x,). The slope is
almost identically two, indicating that the expected convergence rate is
achieved by the computational embodiment of the algorithm.

The laminar flow results were obtained using a uniform finite element
discretization. However, a mandatory key feature for turbulent flow compu-
tations is wse of highly non-uniform discretizations to obtain satisfactory
computational efficiency in concert with acceptable solution accuracy.
Following numerical tests, solution speed and accuracy were both enhanced
using a finite element discretization, variable according to a geometric
progression as

m+1 j-2

n =n, t S p 1<m<M
mkl 1 jZZ (A.4)

In equation (A.4), Nm+1 is the extremum nodal coordinate of Ry and Ny

is the coordinate of the first node of the discretization, typically zero.
Furthermore, p 1is the progression ratio and. s is a scale factor that
allows imbedding a given number of finite elements on R. Shown in Fig. A.2
are graphs of discretizations using equation (A.4) for several s/§ and op.
Curves A, C and D illustrate uniform discretizations; the header shows the
corresponding number of finite elements M spanning & and 38 , where free-
stream boundary conditions are applied. Curve B 1illustrates a modestly non-
uniform grid, suitable for laminar flow predictions. Curve E 1is the finite
element discretization determined by numerical experiment to yield good
solution accuracy for turbulent flow predictions in concert with minimal com-
puter time. The finite element at the wall spans & x 107%, yielding excellent
resolution, yet only 28 finite elements are needed to span R = 38.

Basic solution accuracy for a 2DBL turbulent flow was evaluated by com-
parison of a zero pressure gradient, flat plate computation to the experimental
data of Wieghardt (cf., ref. 36, Vol. II, IDENT 1400). Solution initiation
was accomplished assuming existence of a uniform u, profile at the plate
leading edge and the MLT closure model. Boundary conditions at the plate
surface are_ u;, = u, = 0; at freestream, Xx/8 = 3 , the vanishing gradient was
imposed, du./ 9x,= 0. The initial distribution fér u, was zero since
duy/ 9x1= 0 upstream of the plate. This specification corresponds to a
"sTug-start," the method employed to initiate solutions in the absence of any
preferable alternative. Since the turbulent Reynolds number of the Wieghardt
case is initially small, transition from laminar to turbulent flow occurs
over a finite span of xy. The results of computational experimentation with
the switch from Taminar %o turbulent flow is shown in Fig. A.3, in terms of
skin friction obtained from wall shear by non-dimensionalization with Lo, uz -
see equation (63). The comparison experimental results were obtained -from
data using interpolation and the Ludwieg-Tillman formula, equation (64). In
each case, the flow was computed laminar to the selected transition point,
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and no transition model was employed to alter the intermediate profiles. The
family of computed results are bracketed by the data, and by x, = 0.6m the
various methods are in essential agreement. Corresponding comparison of
computed u, velocity profiles to data indicate excellent agreement, see Fig.
A.4. These results confirm the slug start solution initiation procedure for
the selected planar jet-flap evaluations.

The third requirement, to attest solution accuracy using the hybrid TKE-
MLT closure model, was evaluated using as a comparison basis the experimental
data of Bradshaw (ref. 36, Vol. II, IDENT 2400). Shown in Fig. A.5 are com-
puted U, velocity profile distributions, illustrating the agreement with
data attainable using the MLT closure model. Overall, the comparison is quite
good, although diffusional processes within the flat mid-range appear high as
evidenced by the computed results uniformly exceeding the data. These differ-
ences diminish further downstream, but there is a corresponding trend to
underpredict the first knee in the curve. Shown in Fig. A.6 is the same com-
parison to data with results computed using the TKE closure model. In the
wall dominated viscous sub-layer, MLT was employed to compute near-wall
boundary values of k and e , for numerical solution of equations (53)-(54).
As previously mentioned, the MLT evaluation also yields the initial distri-
butions for k and e. A vanishing normal gradient for k and € was
enforced at the freestream, and computed agreement with data is comparable

to the complete MLT run. Detailed differences do exist however, as illustrated

in Fig. A.7, on the multiple comparison bases of boundary layer integral
parameters. The TKE colution does tend to overpredict both displacement and
momentum thickness in comparison to the MLT solution. Otherwise the results
are quite comparable and confirm the basic concept of the hybrid closure model
for initiation of a parabolic solution in the wake downstream of a sharp

trailing edge.
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